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Abstract: Optimisation of the structure of artificial neural net-
work using evolutionary techniques has been investigated by a num-
ber of authors using various approaches. In this paper, we claim
that such a process requires the design of a complex neurogenesis
model featuring a set of fundamental properties such as modularity
and the possibility of complexity adaptation. Developmental and
molecular biology might be an interesting source of inspiration for
designing such powerful artificial neurogenesis systems allowing the
generation of complex modular neural structures. This paper pro-
vides a description of a neurogenesis model based on a modelling
of a natural genomic network and associated with an evolutionary
process. Experimental results demonstrate some basic capabilities
of the proposed neurogenesis model to produce multi-layered neural
networks. An application to learning in the control of a mobile robot,
lead to unexpected results, giving hints for continuing the research
towards the automatic generation of more complex adaptive neural
networks.

Keywords: genomic networks, evolutionary neurogenesis, mo-
bile robotics

1. Introduction

The artificial neural networks designers have to address both problems of de-
signing a suitable topology and of defining an appropriate learning rule in order
to obtain artificial neural networks featuring good performances. Such tasks are
not casy and may be inspired by ncurobiological observations of the learning
rules, Hebb (1949), as for the topology, Franceschini and Mura (1994), Burnod
(1989), Kohonen (1989). Image processing is a good example where biology
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and Jackel (1990). But biological data relative to the activities of large groups
of neurons are often very complex and specific to a definite part of the nervous
system of a given animal under specific conditions, so that it is difficult to draw
general conclusions from this kind of data. Although the principles of synap-
tic strength modifications are now better understood than before, Kandel and
Schwartz (1982), most of the functions of biological brains are still unknown.
This is mainly due to the huge numbers of interconnected units forming complex
structures and leading to very complex dynamics through the constant change
of synaptic weights and neural activities.

A possible alternative for copying biological nervous systems is based on
modelling another interesting biological process: Evolution. Computer investi-
gations addressing evolution are referred to as Evolutionary Computation (EC),
Béack, Fogel and Michalewicz (1997). The application of Evolutionary Computa-
tion to artificial neural networks has been investigated by a number of authors.
A distinction must be done between cvolutionary techniques used as learning
algorithms (i.c., to calculate the synaptic weights of a neural network whose ar-
chitecture is fixed, Kitano, 1990, Fogel, Wasson, Boughton and Porto, 1997) and
evolutionary techniques used to optimise the topology of a neural network. This
paper will focus on the second point since it represents a promising challenge in
the search for intelligent artificial neural networks.

A review of current research in the area of evolutionary computation for neu-
rogenesis will be followed by the description of an original evolutionary model
using genomic network dynamics to model neurogenesis. Preliminary experi-
ments demonstrate that the neurogencsis process is able to produce arbitrarily
sized multi-layered neural networks. Qther experiments lead to neural network
based control of the mobile robot. Khepera. The genomic network based neu-
rogenesis involves modelling of low level biological entities (i.e., proteins and
genes).  An evolutionary algorithin associated with this neurogenesis process
succeeded in evolving efficient genotypes generating artificial neural networks
used as controllers for a navigation task of the mobile robot,.

2. Review of evolutionary neurogenesis

The artificial morphogenesis of neural networks (neurogenesis) is a process that
uses informations lying on a chromosomnie to build up a structure of neurons inter-
connected via a number of links of different types. A resume of rescarch in devel-
opmental neurogenesis can be found in Kodjabachian and Meyer (1994). These
carly attempts to gencrate automatically artificial neural networks are usually
destinated to produce behavioral controllers for autonomous agents equipped
with sensors and actuators.

Most of these rescarches make an extensive use of production rules at differ-
ent levels: On one hand, Boers and Kuiper used Lindenmayer systems, Linden-
maycr (1968), for rewriting groups of neurons, Boers and Kuiper (1992). Gruau
apnlied a comnlex encoding scheme usine a erammar tree as a rewriting rule
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for neurons Gruau and Whitley (1993). On the other hand, such production
rules can be applied to lower level objects, corresponding to chemical compo-
nents (usually enzymes or other proteins) inside neurons, inducing actions at the
neuron level like cell division, cell migration, axon growth, etc. Harvey (1993)
proposed such a theoretical framework allowing the modelling of polypeptide
chains inside the cells. Vaario and Shimohara (1995) developed such a sys-
tem that models attractions and repulsions between cells leading to formation
of structures. Kitano (1995) observed the emergence of artificial patterns of
axon growth similar to thosc observed in nature. Dellaert and Beer (1994) built
a morphogenesis process inspired by Kauffman’s genetic regulatory networks,
Kauffman (1993), in which a steady state of the genetic network fires a mor-
phogenesis action: a cell division. De Garis (1996) developed a morphogenesis
process based upon a cellular automata hardware able to handle a large number
of artificial neurons.

Although they do not use production rules, Nolfi and Parisi developed an
interesting dynamical neurogenesis model, Nolfi and Parisi (1995), allowing the
cnvironment to influence the morphogenesis process while the agent is interact-
ing with the environment.

The approach presented in this paper features a dynamical genomic network,
involving artificial proteins, which is the heart of a neurogenesis process, allowing
cell differentiation, cell division, cell migration, axon growth, axon guidance and
target rccognition in a two-dimensional space. The resulting neural networks
arc embedded in a simulated mobile robot which has to travel across a maze
while avoiding obstacles.

3. Mobile robotics as an application

Most of the evolutionary ncural networks research has been applied to au-
tonomous agents, Kodjabachian and Meyer (1994). This application arca was
preferred for three main reasons:

e Other traditional robotics approaches failed in proposing a powerful gen-
cral framework.

e Simple autonomous agents may involve a relatively simple input to output
processing. They are casily expandable and hence may require an increas-
ing structural complexity, Braitenberg (1984). This expandability ability
makes them very well suited for evolutionary computation.

e The recent emergence of scientific interest in the field of Artificial Life,
Langton (1988) reinforced this research since this way of obtaining artifi-
cial ncural networks is “biologically plausible” and hence of fundamental
interest.

The last point may provide very interesting guideline for the development of
an cvolutionary robotics project. Such a framework will give powerful metaphors
for the design a self-sufficient, yet powerful, evolutionary system. This research
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philosophy may help to design a fitness function using something similar to an
artificial metabolism to evaluate the individuals.

(}90\
initial cell \

initial message O——%O
o=

chromosome

N N A O

morphogenesis process modular, recurrent,
dynamical neural network

]

L4 4 4

F4 F4 F4

| S 0 - - 00 - L 0 1 |

fitness

genetic algorithm operating
on a population of chromosomes robot metabolism

Figure 1. The evolutionary loop

The evolutionary loop we propose (see Fig. 1) involves successively an evo-
lutionary algorithm evolving chromosomes, a morphogenesis process allowing to
decode a chromosome into a neural network, a dynamic neural network driving
a mobile robot and finally an artificial metabolism defining the viability domain
of the robots and returning a fitness value to the evolutionary algorithm. This
methodology was applied in order to observe the emergence of mobile robot
behaviours. The evolution occurred in simulation and the resulting neural net-
works were then embedded on the real robot Michel (1996a).

4. Dynamic neural network model

The terminology “dynamic neural network” refers to a large set of neural net-
works including recurrent and feedforward networks with a special emphasis on
the complexity of their dynamics. Many reasons led us to use dynamic neu-
ral networks. This family of networks includes multi-layer perceptrons as well
as recurrent networks able of temporal processing. Cousequently, it seems to
be rather universal. Morcover, the properties of such networks are very inter-
esting for autonomous agents (sequernce generation and recognition, models of
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memory, ctc.). It is possible to implement local learning algorithms, cheap in
computation time and friendly to parallel computation. Their very complex
dynamics make their structural design very difficult. Evolutionary algorithms
may be suitable for such a task.
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Figurc 2. Different neural schemes: excitatory links are represented in black
and inhibitory links are represented in white.

All the neurons have the same transfer function (linear thresholded). When
the state of a neuron is close to 1, it will be said to be excited. If the state of
a neuron is close to 0, it will be said to be inhibited (or at rest). Let 2;(¢) be
the state of the ncuron 4 at iteration # and w;;, the weight of the link from the
neuron j to the neuron i. The state of neuron 2 updates as described here:

0 if 3 wijz(t) <0
wgt+1j=¢ 1 if 30, wijmi(t) > 1
> ;wijz(t) otherwise

Different kinds of links exist. Some links have a fixed given synaptic weight
cqual to a positive or a negative real number, while other links have a variable
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synaptic weight whose value is evolving according to a specific Hebbian learning
rule, Hebb (1949). This system may be casily expandable by adding other
learning rules such as different versions of Hebb rule, Anti-Hebb rule, etec. A
collection of different fixed weight links has been carefully designed, allowing to
build various neural schemes (see Fig. 2) that can be seen as building blocks for
larger neural networks. The remanence and accumulator units feature a “set”
input which allows to add the input value to the current state of the unit. Of
course, the resulting state is thresholded to 1. Hence, if the state of the unit
is initially zero and the value received by the unit lower than 1, this value is
stored as the state of the unit. Then, in the first case (remanence), if the unit
receives no more input, this value will slowly decrease according to the weight
of the recurrent link (0.9) performing a weak self-excitation until it reaches zero
(steady state). In the second case (accumulator), a strong self-excitation will
make the state value remain the same until new incoming values from the “set”
input are added to the current state or new incoming values from the “unset”
input arc subtracted from the current state (note that a value of 1 coming from
the “unset” input will set the state of the unit to zero in any case).

5. Artificial neurogenesis

The artificial neurogenesis process allows building of dynamic neural networks
using a linear chromosome. It takes inspiration from the biological explanation
of protein synthesis regulation, Michel and Biondi (1995). This recurrent process
allows an casy generation of modular neural networks (where the same sub-
structures may cxist at different places in the same overall network). Moreover,
due to a strong cpistasis, it features some propertics of dynamical systems that
permit to generate complexity at the border between chaos and order, Kauffiman

(1993).

5.1. Neurogenesis space
5.1.1. Space structure

The neurogenesis process runs in a two-dimensional space discretized using a
hexagonal grid. The choice of hexagons relies on the interesting neighbouring
property of such grids: Like the circle, the hexagon has exactly 6 neighbours
standing at an cqual distance from the central hexagon. Note that in the 8-
neighbours model, the distances between neighbouring cells and the central cell
arc not the same for cach neighboring cell. The 4-neighbours model induces
a bad ratio of the distance between two cells and the number of cases to be
visited between these two cells whereas this ratio is better for the hexagonal
neighbouring (see Fig. 3).

Chemical diffusion, allowing cells to communicate with cach other, cell mi-
gration and axon growth, arc implemented within this hexagonal grid. A
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hexagon usually contains various chemicals (i.e., artificial protein concentra-
tions); it may also contain one cell (a single cell per hexagon). An initial
rectangular size of 38 x 28 = 1064 hexagons was chosen since it represents
a sufficiently large space to contain all necessary neurons for most autonomous
agent applications. For systems using a high input data flow, like image process-
ing systems, this size should be increased according to the size of the input flow.
The hexagon space is configured as a torus (i.c., the upper side communicates
with the lower side and the left hand side communicates with the right hand
side) to avoid border cffects.

(a) (b) () (d)

Figure 3. Two dimensional space discretizations: hexagonal neighbouring (a)
appears to be the best approximation of circle neighbouring (b) while squarce
grids allows cither the 8-neighbours model (¢) or the 4-neighbours model (d).

5.1.2. Chemical diffusion

A model of diffusion was designed to allow various chemicals (i.c., artificial
proteins) to diffuse through this space. Each hexagon contains several con-
centrations of different artificial proteins. These concentrations diffuse to the
neighbouring hexagons according to cquations using the preservation of the
quantity of proteins associated with a diffusion coefficient:

6
Cie(t+1) = Kaiy X |Cinlt) = _—‘_"_Z]=1 iNUk(t)'

Cir(t) represents the concentration of the protein k inside the hexagon i
at time ¢. Kgiy is the diffusion parameter, it must be lower than 0.5 to avoid
oscillation cffects due to a too coarse discretization (we set it to 0.3 in our
experiments). Finally, N;;,j € {1,2,3,4,5,6} represents the 5% neighbouring
hexagon of hexagon 4 (sce Fig. 3a).

5.1.3. Neural cells

Each necural cell lies in a unique hexagon, while an hexagon contains at most one
cell. Each cell is associated with a non unique identifier (i.e., a numerical value)
correenondine to a cell tvne Clonceecatiently two different celle mav have fhe eamoe
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identifier, which means that they arc not differentiated (one relatively to the
other), and hence, they will behave roughly in the same way. The cell identifier
is used to produce systematically inside the cell body a protein whose identifier
is equal to this cell identifier. A cell moves according to chemical gradients: if
the concentration of a protein matches the cell type, the cell moves towards the
neighbouring hexagon that contains the highest (or the lowest) concentration of
such a protein. This attractive (or repulsive) cell behaviour depends upon the
cell type and the protein type: (1) Attractive cells are attracted by attractive
proteins, (2) Attractive cells are repulsed by repulsive proteins, (3) Repulsive
cells are repulsed by attractive proteins and (4) Repulsive cells are attracted by
repulsive proteins.

If a cell is already situated on a local maximum (or minimum) of a matching
protein concentration, it will not move. Cell division and axon growth will be
detailed after describing the chromosome structure and the genomic network.

5.2. Chromosome structure

A chromosome is made of a variable number of genes. As depicted in Fig. 4,
cach gene contains an identifier part, Id, an integer value ranging from 0 to
n — 1, a function part, Function, made up of 3 bits (sec Table 1) and a data
part, IdData, also ranging from 0 to n — 1. The value of n, representing the
number of different proteins, depends on the size of the chromosome. It will be
explained in the evolutionary algorithin scction.

chromosome

HEHE - - - - RO HE I -

i
T
2ene

Id : Function : IdData

Figure 4. Genotype structure: variable length chromosomes contain genes made
up of three parts

5.3. Genomic network
5.3.1. Protein synthesis regulation in biology

The production of chemicals (i.c., protein) inside and outside the cell bodies
is under the control of the genomic network: a complex dynamical production
system. In biology, there are many ways to regulate protein synthesis, here
we focused on two interesting points. Of course, we assumed many simplifica-
tions in order to be clearer but the kev ideas remain: If a narticular nrotein
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l Value | Name Description
000 F_INT-A protein synthesis: create an internal activator protein.
001 F_EXT_A protein synthesis: create an external activator protein.

010 F_CELL_A | cell split: create an attractive cell.

011 F_LINK_A axon growth: create an attractive axon.
100 F_INT.R protein synthesis: create an internal repressor protein.
101 F_EXTR protein synthesis: create an external repressor protein.

110 F_CELL.R | cell split: create a repulsive cell.

111 F_LINK_R axon growth: create a repulsive axon.

Table 1. Gene functions

called repressor is present, it can sit on the start codon! of a specified gene on
the chromosome, so that RNA polymerase cannot read it, and thus the corre-
sponding proteins cannot be synthesised. This system can be recurrent when a
synthesised protein can be a repressor for another gene. The other mechanism
can be seen as the positive version of the first one. A molecule called activator
is necessary to initiate the process of transcription of the DNA into mRNA at
a specific locus, and thus to initiate the proteins synthesis process. Recurrence
remains possible when a synthesised protein causes the synthesis of other ones.

Such a system is not closed since a protein may also initiate various cell
behaviours (possibly cell division, cell migration, axon growth for neural cells,
cte.). This process can be seen as a kind of production system, where proteins
(repressors and activators) arc conditions to the production of other proteins. If
cach protein is represented as a vertex of a graph, the genes will be represented
as connections between proteins. This is called the genomic network (see Fig.
5).

5.3.2. Artificial genomic network

Before the neurogenesis process runs, the chemical contents of all the hexagons
is cleaned and a number of initial cells (possibly one single cell) are laid in some
hexagons of the neurogenesis space. These cells are of a given type (defined
by their identifier). Consequently, they start to produce the corresponding
proteins inside their own cell body. These proteins initiate the complex process
occurring in the genomic network: They activate some genes that will produce
other proteins and so on.

A gene can influence another through the production of a protein. Let
assume that a gene is active. If the Function of the first gene leads to the
synthesis of an activator (resp. repressor) protein, the gene will use its IdData

LA codon is a specific sequence of three consecutive nucleotides that is a part of the genetic
code and that enecifies a narticnlar amino acid in a nrofein or etarte nr etAane nratain cvmthacie
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value to build up such protein. The synthesised protein will be defined by its
type: activator (resp. repressor) and its identifier equal to the value of the
IdData of the gene. Such a protein will then be able to influence other genes if
its identifier matches (i.c., is equal to) Id values of other genes.

Functions leading to the production of activator (resp. repressor) proteins
include F_INT_A (resp. F_INT.R) which produces proteins that remain inside the
cell body while F_EXT_A (resp. F_EXT.R) produces activator (resp. repressor)
proteins that diffuse through the cell body. Proteins remaining in the cell body
cannot move outside of it while diffusion proteins enter the hexagon where the
cell lies and diffuse to its neighbouring hexagons according to the diffusion
model, and so on, thus bringing chemical messages to neighbouring cells. This
extends the notion of genomic network outside the cell body, allowing cells to
communicate with each other.

The following equation models the gene activation process where Ay, is the
activity of gene k, P, representing the set of proteins matching with Ag, C;
being the concentration of protein 4 and 7T € {—1,1} representing whether the
protein 4 is a repressor (—1) or an activator (1). Ay will be said to be active if
its value is positive and inhibited otherwise.

0 le—MEP (Cv XT)<()
Ak(f) == 1 1f l_zlepk (C’ % T) > 1
Eiepk (C; x T;) otherwise

5.4. Neurogenesis actions
5.4.1. Cell division

A gene may initiate a cell division process if its Function is F_CELL_A (resp.
F_CELL_R). This will produce a new atsractive (resp. repulsive) cell whose iden-
tifier is equal to the gene’s IdData parameter. A copy of the chromosome of the
mother cell is given to the child cell, so that all the cells have the same genotype
(just like in Nature). The two cells initially occupy the same hexagon, so they
will have to move away from cach other during next iteration or clse the new
cell will be destroyed (since two cells canuot occupy the same hexagon).

5.4.2. Axon growth

Artificial cells may have several axons connecting them to several other cells and
thus allowing different, types of synapses to be created. An axon is generated by
a gene whose Function is F.LINK.A (resp. F_LINKR). The axon identifier is set
to the IdData valuc of the gene. The newly created attractive (resp. repulsive)
axon will grow towards the direction of the positive (resp. negative) chemical
gradient corresponding to its identifier using the same principle as cell moving
mechanism. Once an axon arrives at a h(‘xagon with a null chemical gradient,
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cell. The resulting synaptic type is corresponding to the axon identifier. It may
be a fixed weight synapse (positive or negative) or a synapse associated with a
learning law (various forms of Hebbian learning, anti-Hebbian learning, etc.)

5.5. Evolutionary algorithm

An evolutionary algorithm was designed to operate on a population of variable
length chromosomes. The standard random binary mutation operator was used
for the binary values of the chromosomes and another mutation scheme was used
to mutate the code values of proteins. These values being comprised between
zero and a maximum value, a mutation replaces the current value by a new
random value in this interval. In addition, new operators were defined to allow
gene addition, gene deletion and crossover between chromosomes of different
sizes Michel (1996b). The selection scheme is an elitist model, that is, the best
chromosome is always transferred to the next population while the percentage
of chance of the other chromosomes to be chosen is proportional to their fit-
ness value. At the beginning of the evolutionary process, cach chromosome is
randomly initialized.

The maximum values of the fields Id and IdData, n — 1, corresponding to
the maximuin number of different proteins is computed using Kauflman’s VK
model of dynamical boolean networks, Kauffman (1993).

genomic network chromosome
1: repressor(2) 3: activator(5)
1: activator(3) 4: repressor(3)
1: repressor(4)  4: repressor(5)
2: activator(3) 5: activator(2)
2: repressor(4) 5 activator(4)

Figure 5. The genomic network represented as a graph and as a set of chromo-
SOINC genes

Let N be the number of clements (genes) of the genomic network. If cach
gene depends on K other genes (on the average), the corresponding genomic
network will have NV links and N+ K vertices (see Fig. 5). Hence, the maximum
number of proteins equals n = N =+ K. It has been shown by Kauffrman that the
value of K determines the dynamics of the genomic network: on the one hand, if
K = N, the behaviour of the network is chaotic, that is — very sensitive to initial
conditions and to perturbations. On the other hand, if K = 1, the network is
said to be a set of independent chains with very simple dynamics. The most
fascinating case corresponds to K = 2 where interesting behaviours appear: the
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network becomes resistant to most of the perturbations and a sort of order seems
to emerge through complex structures. Such networks feature dynamics at the
cdge of chaos, which may lead to interesting results since complex structures in
life exists at the edge of chaos, Langton (1992).

We choose to set K = 2 in our genomic network, in order to have a chance to
observe such interesting dynamics. Consequently, the initial number of proteins
available in the system is given by n = N =+ K = 8 for the initial chromosome.
However, since the size of the chromosome may change during the evolutionary
process, this value is updated dynamically during evolution. Consequently, the
system will create new proteins when the size of the chromosomes increases.
Hence, we could counsider that, in a certain way, the size of the genes also
increases along with the size of chromosomes, because they have to code for an
increasing number of proteins. However, in practice, the protein values were
stored as fixed size integers (i.c., 8 bits) for simplicity reasons.

6. Preliminary experiments

In order to test the capabilitics of the evolutionary neurogenesis system, a fit-
ness function relying only on the structure of the resulting neural networks was
designed. The aim was to observe whether the evolutionary process could find
an arbitrary ncural structure.

6.1. Targeted neural structure

A fully connccted two-layered neural network was chosen as a targeted neural
structure. Eight input neurons and four output neurons are initially provided
to the neurogenesis process. They are laid in two rows on the hexagonal grid.
These units are differentiated in the sense that a special initial protein is sct
in the input units and a different initial protein is set in the output units. As
shown in Fig. 6, the resulting neural network should have eight hidden units
receiving full connection from the input layer and fully connected to the output
layer.

6.2. Fitness function

In order to reach the goal described above, a custom fitness function was de-
signed, depending only on neural structure information. Since the neurogenesis
process may generate any recurrent neural architecture (except those where the
input neurons receive incoming connections), some constraints have to be de-
fined in the fitness function computation: Initially, the fitness value for a given
neural network is set to zero. Then, for cach input neuron, this value is in-
cremented by 1 each time the input neuron is connected to a hidden neuron.
Morcover it is decremented by 0.5 cach time the input neuron is connected to
an output neuron, to avoid shortcut connections. Hence the input layer may
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input
layer

hidden
layer

output layer

Figure 6. A two-laycered, fully connected feedforward neural network as the goal
of the cvolutionary process

totalize a maximum fitness score of 8 x 8 = 64, cach of the eight input neurons
being connected to cach of the eight hidden neurons. For the hidden layer, the
same principle is applied: cach connection between a hidden neuron and an
output neuron is rewarded by 1 fitness point and each connection between two
hidden neurons is sanctioned by 0.5 fitness point to avoid recurrent connections
in the hidden layer. Hence the maximum fitness value for the hidden layer is
8 x 4 = 32. Finally, cach connection leaving the output layer results in a de-
crease of 0.5 of the fitness function to avoid both recurrent connections within
the output layer and also recurrent connections between the output layer and
the hidden layer. The maximal fitness value for the output layer is then 0. Thus,
the maximal overall fitness value for a perfect 8-8-4 fully connected feedforward
ncural network is 64 + 32 = 96.

6.3. Results

At the beginning, an initial population of 100 individuals is randomly generated.
Each chromosome is initially made up of 16 random genes. The cvolutionary
process found the solution it was constrained for (i.¢, the best individual reaches
the fitness of 96 after about 400 generations of the evolutionary algorithm). Fig.
7 illustrates the convergence of the fitness function during more than 1000 gen-
crations of the evolutionary algorithm. Note that, in this run, 400 generations
were necessary to obtain the solution, but this value may be different if a differ-
ent initial random population of genotypes is used. The successive fitness steps
obscrved with the best individual correspond to a series of improving structures.
Early structures do not have the right number of hidden units (i.c., typically less
than 8), then, this number is progressively reached, after which the connections
get organised to fit with the targeted neural structure described in Fig. 6.
Such a preliminary experiment demonstrates the capability of the evolution-
ary process to discover a particular architecture using a custom fitness function.

T 3¢ Bleale thadt aammn nbhoar mnasiral svehibdastainas dwasakht ko aabivasmd $his s
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fitness = f(epoch) - 8-8-4 multi-layered network optimization
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Figure 7. Fitness function evolution during the optimisation of the feedforward
neural network structure with two layers (8 input units, 8 hidden units and 4
output units).

but the aim of this research is to gencrate neural architectures which are opti-
mal for addressing a given problem and which do not necessarily fit structure
constraints. Hence a second series of experiments, involving control of a mo-
bile robot, was set up, in which the fitness function does not rely any more on
structure information, but on the behaviour of the neural network.

7. Mobile robot control
7.1. Khepera robot and Khepera simulator

Experiments were driven on Khepera Simulator, a mobile robot simulator we
developed, Michel (1996b), allowing for an casy transfer of the controllers to
the real robot Khepera, developed by Franzi, Guignard and Mondada (1993)
(K-Team).

The mobile robot includes 8 infrared sensors (small rectangles in Fig. 8)
allowing it to detect the proximity of objects in front of it, behind it, and to
the right and the left of it. The robot is also cquipped with two independent
motors able to run forward and backward, thus allowing the robot to turn very
cfficiently.

7.2. Interface to the artificial neural network

The neural network will read the sensors through its 8 inputs ncurons and
contral the motore thronieh ite forirr ontrniit neurons In order to connect the
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Figurc 8. Khepera (5 ¢m diameter) and its simulated counterpart

artificial ncural networks, resulting from the evolutionary process, to the robot,
it is necessary to define how to feed the inputs of the ncural network using
the robot sensors and how to feed the robot motors using the outputs of the
necural network. In order to simplify this process, we chose to set on the initial
neurogenesis space all the input and output neurons needed inside different
hexagons.

Three experiments were conducted using three different initial layouts of
input and output ncurons made of 8 inputs corresponding to the distance sensors
available on the robot, 2 inputs corresponding to bumper sensors (added in the
simulator but not available on the real robot) and 4 outputs corresponding to
the forward and backward speeds of cach motor. Since our neural model needs
a bias input, this kind of input was also added (sce Fig. 9).

During the first experiment, the input and output cells were initially set
accordingly to the real position of the sensors and motors of Khepera. During
the sccond and the third experiment, several layers were formed where similar
neurons were aligned. The third experiment features big spaces between input
and output layers.

7.3. Fitness function

The goal of the experiment is to develop a ncural network which would allow
a robot to travel, as far as possible, across a maze forming a kind of cross (see
Fig. 10). This shape forces the robot to develop the ability to turn left and
right in order progress in the maze while avoiding the walls.

For that purposc a custom fitness function was designed. The fitness value
sent back to the evolutionary algorithm corresponds to the distance between the
inital position of the robot and the farthest point reached by the robot. The
robot cvaluation is stopped in two cases:
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Figure 9. Initial positions of input and output neurons

e The robot hits an obstacle.
e The cvaluation time is over (typically a few scconds).

7.4. Early results

Since the input distance neurons are not differentiated (i.e., they have the same
numerical identifier), we can expect to observe a similar behaviour (connection
pattern, migration, ctc.) for cach of these ncurons. The bumper sensors are
differentiated, as well as the motor sensors. This should allow the emergence
of pre-wired reflexes relying upon these bumper sensors while the neural struc-
tures processing the distance informations should be trained using, for example,
the available Hebbian links as a learning law and the bumper sensors as rein-
forcement signals. We successfully built a handmade neural network that learns
to associate the distance sensors with the right motor actions according to the
reinforcement signals sent by the bumper sensors. Now let us see whether the
cvolutionary process found a similar structure.

Like in the previous experiments, an initial population of 100 individuals is
randomly gencrated where cach chromosome is initially made up of 16 random
genes.

After 200 generations of the evolutionary algorithm (corresponding to about
4 hours of running time on a Sun Sparc 20), different artificial neural networks
were obtained that exhibited various performances in the maze. The best ones
were obtained during experiment 1: the best neural network of the population
was able to drive the robot across the maze without touching any wall, as long as
we could observe it. The neural network was a single layer feed-forward network
connecting the distance sensors inputs to three of the four motor outputs with
an appropriate sct of fixed weight (see Fig. 11). The values 0.5 and 51 of the
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Figure 10. Cross-like maze

synaptic weights were chosen by the evolutionary process within a set of weight
valucs given a priori. We were a bit disappointed since we had not expected
that the evolutionary process would succeed in establishing different connections
starting from the non-differentiated input distance neurons. Different connec-
tion schemes were achicved by using the fact that the non-differentiated input
cells were initially at different geographical locations on the hexagonal grid and
hence received different chemical messages from their neighbourhood, leading
to different dynamics inside the cell bodies.

In order to try to minimise the difference of behaviour between non-differentiated
cells, the input cells were aligned in a layer as described in Fig. 9, experiment
2. The resulting neural networks were very complex, made of lots of hidden
neurons and lots of connections, especially between inputs and hidden neurons.
The non-differentiated cells had a roughly similar behaviour while slight differ-
cnees in the connection patterns made the overall scheme perform almost as
well as in the first experiment: the corresponding robots were able to travel in
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Figure 11. Resulting best neural network during experiment 1

the cross maze even if they sometimes hit a wall.

Finally, we decided to set the output neurons far away from the input neurons
so which their chemical influence on the input neurons would be rather similar
for all input neurons. The results were similar to those obtained in experiment
2, except that the resulting networks were not so complex.

8. Conclusion

We have proposed an algorithm for evolutionary neurogenesis, applied to the
control of a mobile robot, that is characterized by a strong inspiration from
biology and the use of dynamical genomic network. Such a proposal leads to
interesting carly results: First, the evolutionary neurogenesis process proved to
be able to generate particular neural structures when properly constrained with
a custom fitness function. Second, the evolutionary process turned out to be
able to find near-optimal architectures for a simple navigation task involving
obstacle avoidance. Indeed, it was impossible for us to design an achitecture
having a better fitness function than the one found by the evolutionary pro-
cess. Such efficient results, achieved with rather simple reactive artificial neural
networks, should be compared with our expectations of getting more complex
structures involving learning. On one hand, the complex structures we imag-
ined, associated with complex learning behaviour, need that the robot learns by
trial and error and hence hits some walls to learn to avoid them. On the other
hand, simple structures discovered by the evolutionary process do not need to
make such crrors since their adapted behaviour is innate. This demonstrates
the ability of the neurogenesis process to be able to connect in a different way
non-differentiated cells if necessary and the ability of the overall evolutionary
process to find out simple yet near-optimal solutions.

A look back to biology might help to understand better what should happen
in artificial system. If we consider primitive animals, like most insects, they are
often capable of walking as soon as they are born, without any learning, just
like the robots discovered by the evolutionary process. Human beings and other
mammals usually need a learning stage before they are able to walk. This may be
oxplained bv the fact that such evolved species developed elaborated learning
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abilities exempting them from developing and preserving complex hardwired
behaviours in their genotype. Moreover, for complex tasks (like walking with
two legs), adaptive behaviours are far more efficient than hardwired behaviours.

This research should now address a new series of problems for which learning
is a really mandatory issuc for getting maximum fitness. Hence, the selective
pressure will favour individuals able of on-line adaptation during their lifetime
(i.e., evaluation time). It is likely that such a methodology might be able to
produce more efficient autonomous agent controllers capable of facing more
complex environments through the use of learning potentialities.
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