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Abstract: Optimisation of the structure of artificial neural net­
work using evolutionary techniques has been investigated by a num­
ber of authors using various approaches. In this paper, we claim 
that such a process requires the design of a complex ncurogcnesis 
model featuring a set of fundamental properties such as modularity 
and the possibility of complexity adaptation. Developmental and 
molecular biology might be an interesting source of inspiration for 
designing such powerful artificial neurogcnesis systems allowing the 
generation of complex modular neural structures. This paper pro­
vides a description of a ncurogcnesis model based on a modelling 
of a natural genomic network and associated with an evolutionary 
process. Experimental results demonstrate some basic capabilities 
of the proposed ncurogcncsis model to produce multi-layered neural 
networks. An application to learning in the control of a mobile robot 
lead to unexpected results, giving hints for continuing the research 
towards the automatic generation of more complex adaptive neural 
networks. 

Keywords: genomic networks, evolutionary ncurogcncsis, mo­
bile robotics 

1. Introduction 

The artificial neural networks designers have to address both problems of de­
signing a suitable topology and of defining an appropriate learning rule in order 
to obtain artificial neural networks featuring good performances. Such tasks arc 
not ca..<;y and may be inspired by neurobiological observations of the learning 
rnlcs, Hebb (l!J4!J), as for the topology, Franceschini and Mura (l!J94), Burnod 
(l!J8!J), Kohoncn (l!J8!J). Image processing is a good example where biology 
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and Jackel (1990). But biological data relative to the activities of large groups 
of neurons arc often very complex and specific to a definite part of the nervous 
system of a given animal under specific conditions, so that it is difficult to draw 
general conclusions from this kind of data. Alt hough the principles of synap­
tic strength modificat ions arc now better understood than before, Kandel and 
Schwart:t (Hl82) , most of the functions of biological brains arc still unknown. 
This is mainly due to the huge number~ of interconnected units forming complex 
structures and leading to very complex dynamics through the constant change 
of synaptic weights and neural activities. 

A possible a lternative for copying bi logical nervous systems is based on 
modelling another interest ing biological process: Evolution. Computer invest i­
gations addressing evolution arc referred to as Evolutionary Computation (EC) , 
Back, Fogel and Michalcwicz (1997). T he application of Evolutionary Computa­
tion to artificia l neural networks has b een investigated by a number of aut hors. 
A distinction must be done between evolutionary techniques used as learning 
algorithms (i.e., to calculate the synaptic weights of a neural network whose ar­
chitecture is fixed, Kitano, 1990, Fogel, W sson , Boughton and Porto, 1997) and 
evolutionary techniques used to optim ise the topology of a neural network. This 
paper will focus on the second point s ince it represents a promising challenge in 
the search for intelligent art ificial neural networks. 

A review of current research in the area of evolut ionary computation for ncu­
rogcncsis will be followed by the description of an origina l evolutionary model 
using genomic network dynamics to mo el ncurogcncsis. P reliminary experi­
ments demonstrate that t he ncurogencsis process is able to produce arbitrarily 
si:tcd mult i-layered neural networks. Other experiments lead to neural network 
based control of the mobile robot Khe]Jem. T he genomic network based neu­
rogcnesis involves modelling of low level biological entities (i.e., proteins and 
genes). An evolutionary algorithm associated with t his ncurogcnesis process 
succeeded in evolving efficient genotypes generating artificial neural networks 
used as controllers for a navigation task f the mobile robot. 

2. Review of evolutionary neurogenesis 

The artificial morphogenesis of neural networks (ncurogcncsis) is a process that 
uses informations lying on a chromosome to build up a structure of neurons inter­
connected via a number of links of different types. A resume of research in devel­
opmental ncurogenesis can be found in Kodjabachian and Meyer (1994). T hese 
early attempts to generate automatically artificial neural networks arc usually 
dcstinatcd to produce behavioral controllers for autonomous agents equipped 
with sensors and actuators. 

Most of these rcsearchc:-; make an extensive usc of production rules at differ­
ent levels: On one ham!, Boers and Kuiper used Lindcnmaycr systems, Linden­
mayer (1968), for rewriting groups of neurons, Bocn; and K uiper (1992) . Gruau 
applied a complex encoding scheme usin1~ a grammar tree as a rewriting rule 
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for neurons Gruau and Whitley (1993). On the other hand, such production 
rules can be applied to lower level objects, corresponding to chemical compo­
nents (usually enzymes or other proteins) inside neurons, inducing actions at the 
neuron level like cell division, cell migration, axon growth, etc. Harvey (1993) 
proposed such a theoretical framework allowing the modelling of polypeptide 
chains inside the cells. Vaario and Shimohara (1995) developed such a sys­
tem that models attractions and repulsions between cells leading to formation 
of structures. Kitano (HHJ5) observed the emergence of artificial patterns of 
axon growth similar to those observed in nature. Dellacrt and Beer (1994) built 
a morphogenesis process inspired by Kauffman's genetic regulatory networks, 
Kauffman (1993), in which a steady state of the genetic network fires a mor­
phogenesis action: a cell division. De Garis (199G) developed a morphogenesis 
process based upon a cellular automata hardware able to handle a large number 
of artificial neurons. 

Although they do not usc production rules, Nolfi and Parisi developed an 
interesting dynamical ncurogcncsis model, Nolfi and Parisi (1995), allowing the 
environment to influence the morphogenesis process while the agent is interact­
ing with the environment. 

The approach presented in this paper features a dynamical genomic network, 
involving artificial proteins, which is the heart of a ncurogcncsis process, allowing 
cell differentiation, cell division, cell migration, axon growth, axon guidance and 
target recognition in a two dimensional space. The resulting neural networks 
arc embedded in a simulated mobile robot which ha...o;; to travel across a maz-:c 
while avoiding obstac:lcs. 

3. Mobile robotics as an application 

Most of the evolutionary neural networks research has been applied to au­
tonomous agents, Kodjabac:hian and Meyer (1994). This application area was 
preferred for three main reasons: 

• Other traditional robotics approaches failed in proposing a powerful gen­
eral framework. 

• Simple autonomous agents may involve a relatively simple input to output 
processing. They arc easily expandable and hence may require an increas­
ing structural complexity, Braitcnbcrg (1984). This cxpandability ability 
makes them very well suited for evolutionary computation. 

• The recent emergence of scientific: interest in the field of Artificial Life, 
Langton (1988) reinforced this research since this way of obtaining artifi­
cial neural networks is "biologically plausible" and hence of fundamental 
interest. 

The la...<>t point may provide very interesting guideline for the development of 
an evolutionary robotics project. Such a framework will give powerful metaphors 
for the design a sclf-suffic:icnt, yet powerful, evolutionary system. This research 
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philosophy may help to design a fitness function using som ething simila r t o an 
a rtificia l metabolism to evaluate the individuals . 

chromosome 

.__.__.__.----~.----~.__.____.____.___,_ .. . I : 

morphogenesis process 

:: 
: : 
:: 

:: 
genetic algorithm operating 

on a population of chromosomes 

fitness 

modular, recurrent, 
dynamical neural network 

robot metabolism 

F igure 1. The evolutionary loop 

T he evolutionary loop we p ropose (s c Fig. 1) involves successively an evo­
lutionary algorithm evolving ch romosomes, a morphogenesis process a llowing to 
decode a chromosome into a neura l network, a dynamic neural network d riving 
a mobile robot and finally an ar t ificia l metabolism defining the viability dom ain 
of the robots and returning a fitness value to the evolut ionary algori thm . This 
methodology was applied in order to observe the emergence of mobile robot 
behaviours. T he evolution occurred in simulation and t he resul t ing neura l net­
works were t hen embedded on t he real robot Michel (1006a). 

4. D y namic neural networlk model 

T he terminology "dynamic neural network" refers to a large set of neural net­
works including recurrent and fceclfo rward networks with a special em phasis on 
t he complexity of t heir dynamics. Many reasons led us to usc dynamic neu­
ral networks. T his family of network:> includes multi-layer pcrccptrons as well 
as recurrent networks able of temporal processing. Consequent ly, it seems to 
be rather universal. Moreover, the properties of such networks arc very inter­
esting for autonomous agents (sequence generation and recognit ion , models of 
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memory, etc.). It is possible to implement local learning algorithms, cheap in 
computation time and friendly to parallel computation. Their very complex 
dynamics make their struc:tmal design very difficult. Evolutionary algorithms 
may be suitable for such a task. 
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Figure 2. Different neural schemes: excitatory links arc represented in black 
and inhibitory links a rc represented in white. 

All the neurons have the same transfer function (linear thrcsholdcd). When 
the state of a neuron is close to 1, it will be said to be excited. If the state of 
a neuron is dose to 0, it will be said to be inhibited (or at rest). Let X;,(t) be 
the state of the ncmon i at iteration t and w;_i, the weight of the link from the 
neuron j to the neuron i. The state of neuron i updates as described here: 

if L.i Wi_i1:i(t) :::; 0 
if"L,_iwi.ixi(t) 2 1 
otherwise 

Different kinds of links exist. Some links have a fixed given synaptic weight 
equal to a positive or a negative real number, while other links have a variable 
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synaptic weight whose value is evolving according to a specific Hcbbian learning 
rule, Hcbb (194£!) . This system may be easily expandable by adding other 
learning rules such as different versions of Hcbb rule, Anti-Hebb rule, etc. A 
collection of different fixed weight links has been carefully designed , allowing to 
build various neural schemes (sec Fig. 2) that can be seen as building b locks for 
larger neural networks. The remanence and accumulator nnits feature a "set" 
input which allows to add the input valnc to the current state of the unit. Of 
course, the resulting state is thresholdcd to 1. Hence, if the state of the unit 
is initially ;tcro and the value received by the unit lower than 1, t his value is 
stored as the state of the unit. Then , in the fi rst case (remanence), if the unit 
receives no more input , this value will slowly dccr·case according to the weigh t 
of the recurrent link (0.9) performing a weak self-excita t ion until it reaches zero 
(steady sta te) . In the second case (accumulator), a strong self-excitation will 
make the state value remain the same until new incoming values from the "set" 
input arc added to the current state or new incoming values from the "unset" 
input arc subtracted from the current state (note that a value of 1 coming from 
the "unset" input will set t he state of the unit to zero in any case). 

5. Artificial neurogenes1s 

The artificial ncurogcncsis process allows building of dynamic neural networks 
nsing a linear chromosome. It takes inspirat ion from the biological cxplanatiou 
of protein synthesis regulation, Michel aud Biondi (1995) . This recurrent process 
allows an easy generation of modular neural networks (where the same sub­
structures may exist at different places in the same overall network) . Moreover, 
clue to a strong epistasis, it features some properties of dynamical systems t hat 
permit to generate complexity at the border between chaos and order, Kauffman 
(1993). 

5 .1. N eurogenesis space 

5.1.1. Space structure 

T he ncurogcnesis process runs in a two- dimensional space d iscrctizcd using a 
hexagonal grid . T he choice of hexagons relics 011 the interesting neighbouring 
property of :mch grids: Like the eirclc, the hexagon h a..<; exactly G neighbours 
standing a t an equal distance from the central hexagon. Note that in t he 8-
ucighbours model , the distances b etween neighbouring cells and the central cell 
arc not the same for each neighboring cell. T he 4-neighbours model induces 
a bad ratio of the distance between two cells and the number of cases to be 
visited between these two cells whereas this ratio is better for the hexagonal 
ncighbouriug (sec Fig. 3). 

Chemical diffusiou, allowing ccllf; t o communicate with each other, cell mi­
gration and axon growth, arc irnplcrncntcd within this hexagonal grid. A 
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hexagon usually contains various chemicals (i.e., artificial protein concentra­
tions); it may also contain one cell (a single cell per hexagon). An initial 
rectangular size of 38 x 28 = 1064 hexagons was chosen since it represents 
a sufficiently large space to contain all necessary neurons for most autonomous 
agent applications. For systems using a high input data flow, like image process­
ing systems, this size should be increased according to the size of the input flow. 
The hexagon space is configured as a torus (i.e., the upper side communicates 
with the lower side and the left hand side communicates with the right hand 
side) to avoid border effects. 

(a) (b) (c) (d) 

Figure 3. Two dimensional space discretizations: hexagonal neighbouring (a) 
appears to be the best approximation of circle neighbouring (b) while ::;quare 
grid::; allows either the 8-neighbours model (c) or the 4-neighbours model (cl). 

5.1.2. Chemical diffusion 

A model of diffusion wa::; designed to allow various chemicals (i.e., artificial 
proteins) to diffuse through this space. Each hexagon contains several con­
centrations of different artificial proteins. These concentrations diffuse to the 
neighbouring hexagons according to equations using the preservation of the 
quantity of proteins associated with a diffusion coefficient: 

Cu, ( t) represents the concentration of the protein k inside the hexagon i 
at time t. J(dif is the diffusion parameter, it must be lower than 0.5 to avoid 
oscillation effects cine to a too coarse discretization (we set it to 0.3 in our 
experiments). Finally, Ni.i, j E { 1, 2, 3, 4, 5, 6} represents the /" neighbouring 
hexagon of hexagon i (sec Fig. 3a). 

5.1.3. Neural cells 

Each neural cell lies in a unique hexagon, while an hexagon contains at most one 
cell. Each cell is associated with a non unique identifier (i .e., a numerical value) 
r·mTC'~nnnrlinP· t.n :1. r·0ll t.vn0. f:nn~C'nnC'nt.lv. t.wn diff0rr.nt. cr.ll~ m:1.v h r. t.h . s . r. 
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identifier, which means that they arc not differentiated (one relatively to the 
other), and hence, they will behave roughly in the same way. The cell identifier 
is used to produce systematically inside t he cell body a protein whose identifier 
is equal to this cell identifier. A cell moves according to chemical gradients: if 
the concent ration of a protein matches the cell type, t he cell moves towards t he 
ncighboming hexagon that contains t he highest (or the lowest) concentration of 
such a protein. T his attractive (or repulsive) cell behaviom depends upon the 
cell type and the protein type: (1) Attractive cells arc attracted by attractive 
proteins, (2) Attractive cells arc repulsed by repulsive proteins, (3) Repulsive 
cells arc repulsed by attractive protcius and (4) Repulsive cells arc attracted by 
repulsive proteins. 

If a cell is already situated on a local maximum (or minimum) of a matching 
protein concentration, it will not move. Cell division and axon growth will be 
detailed after describing t llC chromosome structure and the genomic network. 

5.2. ChromosomE=~ structure 

A chromosome is made of a variable number of genes. As depicted in F ig. 4, 
each gene contains an identifier part, Id, an integer value ranging from 0 to 
n- 1, a function part, Function, made up of 3 bits (sec Table 1) and a data 
part, IdData, a lso ranging from 0 to n ·- 1. The value of n, representing the 
number of different proteins, depends on the size of the chromosome. It will be 
explained in the evolutionary a lgorithm section. 

chromosome 

---............. 
gene ~ 

Functio~ 

F igme 4. Genotype stmcturc: variable length chromosomes contain genes made 
up of three parts 

5.3. Genomic network 

5.3.1. Protein synthesis regulation in biology 

The production of chemicals (i .e., protein) inside and outside the cell bodies 
is under the control of the genomic network: a complex dynamical production 
system. In biology, there a rc many ways to regulate protein synthesis, here 
we fo cused on two interesting poin ts. Of course, we assumed many simplifica­
t,' s i 1 ·cler to c clear '1'. hut tlw kev ideas remain: If a narticular nrotcin 
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Value Name Description 

000 F_!NT_A protein synthesis: create an internal activator protein. 

001 F..EXT.A protein synthesis: create an external activator protein. 

010 F_CELL.A cell split: create an attractive cell. 

011 F_L!NK_A axon growth: creale an attractive axon. 

100 F_!NT_R. protein synthesis: create an internal repressor protein. 

101 F_EXT_R. protein synthesis: create an external repressor protein. 

110 F_CELL_R. cell split: create a repulsive cell. 

111 F..LINK_R axon growth: create a repulsive axon . 

Table 1. Gene functions 

called repressor is present, it can sit on the start codon 1 of a specified gene on 
the chromosome, so that RNA polymerase cannot read it, and thus the corre­
sponding proteins cannot be synthesised. This system can be recurrent when a 
synthesised protein can he a repressor for another gene. The other mechanism 
can be sceu as the positive versiou of the first ouc. A molecule called activator 
is necessary to initiate the process of transcription of the DNA into mRNA at 
a specific locus, and tlms to initiate the proteins synthesis process. Recurrence 
remains possible whcu a synthesised protein causes the synthesis of other ones. 

Such a system is not closed since a protein may also initiate various cell 
bchavionrs (possibly cell division, cell migration, axon growth for neural cells, 
etc.). This process cau be seen as a kind of production system, where proteins 
(repressors ami activators) arc conditions to the production of other proteins. If 
each protein is representee! as a vertex of a graph, the genes will be represented 
as connections between proteins. This is called the genomic network (sec Fig. 
::>). 

5.3.2. Artificial genomic network 

J3eforc the ncurogencsis process runs, the chemical contents of all the hexagons 
is cleaned and a number of initial cells (possibly one single cell) arc laid in some 
hexagons of the ncmogcncsis space. These cells arc of a given type (defined 
by their identifier) . Consequently, they start to produce the corresponding 
proteins inside their own cell body. These proteins initiate the complex process 
occurring in the genomic network: They activate some genes that will produce 
other proteins and so 011. 

A gene can influence another through the production of a protein. Let 
assume that a gene is active. If the Function of the first gene leads to the 
synthesis of an activator (resp. repressor) protein, the gene will usc its IdData 

1 A codon is a specific sequence of three consecutive nucleotides that is a part of the genetic 
COde and that specifieS a particular aminO ac:ici in rt nrot.Pln Or ~t:.:.rtc: nr c:tnnc: nrnh::o;., counf I .. ,....,; .... 



520 0 . MICHEL 

value to build up such protein . T he synthesised protein will be defined by its 
type: activa tor (resp. repressor) and it s identifier equal to t he value of the 
I dData of the gene. Such a protein will then be able to influence other genes if 
its identifier matches (i.e., is equal to) Id values of other genes. 

Functions leading to the product ion of activator (resp. repressor) proteins 
include LINT....A (resp. LINT~) which produces proteins t hat remain inside the 
cell body while L EXT ..A (resp. LEXT . ..R) produces activator (resp . repressor) 
proteins that diffuse t hrough the cell body. P roteins remaining in t he cell body 
cannot move outside of it while diffusion proteins enter the hexagon where the 
cell lies and diffuse to its neighbouring hexagons according to the diffusion 
model, and so on, thus bringing chemical messages to ueighbouring cells. This 
extends the notion of genomic network o tside the cell body, allowing cells to 
communicate with each other. 

T he following equation models t he gene activation process where Ak is the 
act ivity of gene k , Pk representing t he set of proteins matching with Ak, C'i 

being the concentration of protein i and TiE { -1, 1} representing whether the 
protein i is a repressor (-1) or an activator (1). Ak will be said to be active if 
its value is positive and inhibited otherwise. 

5 .4. Neurogenesis actions 

5.4.1. C ell division 

if ~=iEPk ( C'i X Ti ) ::; 0 
if ~=iEPk(C'i X Ti) ~ 1 
ot herwise 

A gene may initia te a cell d ivision process if its Function is LCELL....A (resp. 
LCELL~) . This will produce a new at';ractive (resp. repulsive) cell whose iden­
t ifier is equal to the gene's I dDa t a parameter. A copy of the chromosome of the 
mother cell is given t o the child cell, so t hat all the cells have the same genotype 
(just like in Nature). The two cells initially occupy the same hexagon , so t hey 
will have to move away from each other dming next iteration or else the new 
cell will be destroyed (since two cells cannot occupy the same hexagon ). 

5 .4.2. A xon growth 

Art ificia l cells may have several axons .connecting them to several other cells and 
t hus allowing differeut types of synapses to be created. An axon is generated by 
a gene whose Funct ion is F~INK....A (resp. F~INK~). T he axon identifier is set 
to the I dDa t a value of t he gene. T he newly created attractive (resp. repulsive) 
axon will grow towards the direction of the positive (resp. negative) chemical 
gradient corresponding to its identifier using t he same principle as cell moving 
mechanism. Once an axon arrives a t a hexagon with a null chemical gradient, 
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cell. The resulting synaptic type is corresponding to the axon identifier. It may 
be a fixed weight synapse (positive or negative) or a synapse associated with a 
learning law (various forms of Hcbbian learning, anti-Hcbbian learning, etc.) 

5.5. Evolutionary algorithm 

An evolutionary algorithm was designed to operate on a population of variable 
length chromosomes. The standard random binary mutation operator was used 
for the binary values of the chromosomes and another mutation scheme was used 
to mutate the code values of proteins. These values being comprised between 
zero and a maximum value, a mutation replaces the current value by a new 
random value in this interval. In addition, new operators were defined to allow 
gene addition, gene deletion and crossover between chromosomes of different 
sizes Michel (1996b). The selection scheme is an elitist model, that is, the best 
chromosome is always transferred to the next population while the percentage 
of chance of the other chromosomes to be chosen is proportional to their fit­
ness value. At the beginning of the evolutionary process, each chromosome is 
randomly initialized. 

The maximum values of the fields Id and IdData, n - 1, corresponding to 
the maximum rmmbcr of dificrcnL proLcius is com puLed usiug Kaufimau'::; N K 
model of dynamical boolean networks, Kauffman (1993). 

genomic network chromosome 

1: repressor(2) 
1: activator(3) 
1: repressor( 4) 
2: activator(3) 
2: repressor(4) 

3: activator(5) 
4: repressor(3) 
4: repressor(5) 
5: activator(2) 
5: activator(4) 

Figure 5. The genomic network represented as a graph and as a set of chromo­
some genes 

Let N be the number of clements (genes) of the genomic network. If each 
gene depends on K other genes (on the average), the corresponding genomic 
network will have N links and N-;- K vertices (sec Fig. 5). Hence, the maximum 
number of proteins equals n = N-;- K. It has been shown by Kauffman that the 
value of K determines the dynamics of the genomic network: on the one hand, if 
K = N, the behaviour of the network is chaotic, that is - very sensitive to initial 
conditions and to perturbations. On the other hand, if K = 1, the network is 
said to be a set of independent chains with very simple dynamics. The most 
fascinating case corresponds to K = 2 where interesting behaviours appear: the 



[i22 0. MICHEL 

network becomes resistant to most of t he perturbations and a sort of order seems 
to emerge through complex struc:tmcs. Such networks fcatnrc dynamics at the 
edge of chaos, which may lead to interesting results since complex structures in 
life exists at the edge of chaos, Langton (Hl92) . 

We choose to set K = 2 in our gcuomic network, in order to have a chance to 
observe such interesting dynamics. Consequently, the initial number of proteins 
available in the system is given by n = N-;- K = 8 for the initial chromosome. 
However, since the siL~c of the chromosome may change dmiug the evolutionary 
process, this value is updated dynamically during evolution. Consequently, t he 
system will create new proteins when th<! size of the chromosomes increases. 
Hence, we could consider that, in a certain way, the size of the genes a lso 
increases along with the size of chromosomes, because t hey have to code for an 
increasing number of proteins. However, in practice, the protein values were 
stored as fixed siL~c integers (i.e., 8 bits) for simplicity reasons. 

6. Preliminary experiments 

Iu order to test the capabilitic::; of t he evolutionary ncurogcncsis system, a f-it ­
ness fnnction relying only on the structnrc of the resulting neural networks was 
designed. The aim wa.·o; to observe whether the evolut ionary process could find 
au a rbitrary neural structure. 

6.1. Targeted neural structure 

A fnlly connected two-layered ncura.l network was chosen as a targeted neural 
structure. Eight input ucm ons and four output neurons arc initially provided 
to the ncmogencsis process. They arc laid in two rows on the hexagonal grid. 
These units arc diffcrcntiatccl iu the sense that a special initial protein is set 
in the input nnits and a different initial protciu is set iu the output units. As 
shown in F ig. G, the resulting neural network shonld have eight hidden units 
receiving full connection from Lhe iupnt layer and fnlly connected to the outpnt 
layer. 

6.2. Fitness function 

lu order to reach the goal described above, a cnstom fi tness function was clc­
sigucd, depending only on ucnral strnct.mc: information . Since the ncurogencsis 
process may generate any rec:nrrcnt ucural architecture (except those where the 
inpnt nenrons receive incoming cmmections), some constraints have to he de­
fined in the fitness fuucti011 cmnputat ion: Init ially, the fitness value for a given 
ncnral network is set to zero. Then, for each input ncnron, this valnc is in­
cremented by 1 each time the input neuron is connected to a hidden neuron. 
Moreover it is clccrcmcntecl by Q.[i each time the input ucuron is connected to 
an ontpnt neuron, to avoicl shortcut connections. Hence Lhc input layer may 
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input 
layer 

hidden 
layer 

output layer 

523 

Figure G. A two-layered, fully connected feedforward neural network as the goal 
of the evolntionary process 

toLali<:e a maximum fitness score of 8 x 8 = G4, each of the eight input neurons 
being c:onnected to each of the eight hidden neurons. For the hidden layer, the 
same princ:iplc is applied: each c:onnec:tion between a hidden neuron and an 
output neuron is rewarded by 1 fitness point and each connection between two 
hidden neurons is sanctioned by 0.5 fitness point to avoid recurrent connections 
in the hidden layer. Hence the maximum fitness value for the hidden layer is 
8 x 4 = 32. Finally, each connection leaving the output layer results in a de­
crease of 0.5 of the fitness function to avoid both recurrent connections within 
the output layer and also recurrent connections between Lhe output layer and 
the hidden layer. The maximal fitness value for the output layer is then 0. Thus, 
the maximal overall fitness value for a perfect 8-8-4 fully connected feedforward 
neural network is G4 + 32 = 9G. 

6.3. Results 

At the beginning, an initial population of 100 individuals is randomly generated. 
Each chromosome is initially made up of 16 random genes. The evolutionary 
process found the solution it was constrained for (i.e, the best individual reaches 
the fitness of 96 after about 400 generations of the evolutionary algorithm). Fig. 
7 illnstrates the convergence of the fitness function during more than 1000 gen­
erations of the evolutionary algorithm. Note that, in this run, 400 generations 
were necessary to obtain the solution, but this value may be different if a differ­
ent initial random population of genotypes is used. The successive fitness steps 
observed with the best individual correspond to a series of improving structures. 
Early structures do not have the right number of hidden units (i.e., typically less 
than 8), then, this number is progressively reached, after which the connections 
get organised to fit with the targeted neural structure described in Fig. G. 

Such a preliminary experiment demonstrates the capability of the evolution­
ary process to discover a particular architecture using a custom fitness function. 
It is likely that SOme Other JlC11J"~.l ~rr·hittV•tnT"f'" mio·ht hn ~,.J...;mmrl .~.;,. ···~·· 
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Figure 7. Fitness function evolution during the optimisation of the fccdforward 
neural network structure with two layers (8 input units, 8 hidden units and 4 
output units). 

but the aim of this research is to generate neural architectures which arc opti­
mal for addressing a given problem and which do not necessarily fit structure 
constraints. Hence a second series of experiments, involving control of a mo­
bile robot, was set up, in which the f[ tncss function docs not rely any more on 
structure information, but on the behaviour of the neural network. 

7. Mobile robot control 

7.1. Khepera robot and Khepera simulator 

Experiment::; were driven on Khepent S ·imulatoT, a mobile robot simulator we 
developed, Michel (190Gb), allowing for an ca::;y t ransfer of the controllers to 
the real robot Khepem, developed by Franz;i, Guignard and Mondada (1!)!)3) 
(K-Tcam). 

T he mobile robot includes 8 infrared sensor::; (small rectangles in Fig. 8) 
allowing it to detect the proximity of objects in front of it, behind it , and to 
the right and the left of [t. The robot is also equipped with two independent 
motors able to run forward and backward, t lms allowing the robot to t urn very 
efficiently. 

7.2. Interface to the artificial neural network 

The neural network will read t he sensors t hrough its 8 inputs neurons and 
r·ronh-rol t h " mnt.nr"< iJ,rn11P·l1 it.s fonr ontnnt neurons. In order to connect the 
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2 

5 

Figure 8. Khepera (5 em diameter) and its simulated counterpart 

artificial neural networks, resulting from the evolutionary process, to the robot, 
it is necessary to define how to feed the inputs of the neural network using 
the robot sensors and how to feed the robot motors using the outputs of the 
neural network. In order to simplify this process, we chose to set on the initial 
ncurogcncsis space all the input and output neurons needed inside different 
hexagons. 

Three experiments were conducted using three different initial layouts of 
input and output neurons made of 8 inputs corresponding to the distance sensors 
available on the robot, 2 inputs corresponding to bumper sensors (added in the 
simulator but not available on the real robot) and 4 outputs corresponding to 
the forward and backward speeds of each motor. Since our neural model needs 
a bias input, this kind of input was also added (sec Fig. !J). 

During the first experiment, the input and output cells were initially set 
accordingly to the real position of the sensors and motors of Khepera. During 
the second and the third experiment, several layers were formed where similar 
neurons were aligned. The third experiment features big spaces between input 
and output layers. 

7.3. Fitness function 

The goal of the cxpcrimcut is to develop a neural network which would allow 
a robot to travel, as far as possible, across a ma~c forming a kind of cross (sec 
Fig. 10). This shape forces the robot to develop the ability to turn left and 
right in order progress in the maze while avoiding the walls. 

For that purpose a custom fitness function was designed. The fitness value 
sent back to the evolutionary algorithm corresponds to the distance between the 
inital position of the robot and the farthest point reached by the robot. The 
robot evaluation is stopped in two cases: 
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• The robot hits an obstacle. 
• The evaluation time is over (typically a few seconds). 

7.4. Early results 

0. MICHEL 

Since the input distauce nemons are not differentiated (i.e., they have the same 
numerical identifier) , we can expect to observe a similar behaviour (connection 
pattern, migration, etc.) for each of these neurons. The bumper sensors are 
differentiated, as well as the motor sensors. This should allow the emergence 
of pre-wired reflexes relying upon these lmmper sensors while the neural strnc­
tltres processing the distance informatiom should be trained using, for example, 
the available Hebbian links as a leaming law and the bumper sensors as rein­
forcement signals. We sm:cessfully built a handmade neural network that learns 
to associate the distance sensors with the right motor actions according to the 
reinforcement signals sent by the bumper sensors. Now let us sec whether the 
evolutionary process found a similar stmcture. 

Like in the previous experiments, au initial population of 100 individuals is 
randomly generated where each chromosome is initially made up of 16 random 
genes. 

After 200 generations of the evolutionary algorithm (corresponding to about 
4 hours of running time on a Sun Spare 20), different artificial neural networks 
were obtained that exhibited varions performances in the maze. T he best ones 
were obtained during experiment 1: the best neural network of the populatimt 
was able to drive the robot across the maze without touching any wall, as long as 
we could observe it. The neural network was a single layer feed-forward network 
connecting the distance sensors input:; to three of t he four motor outputs with 
an appropriate set of fixed weight (sec Fig. 11). T he values 0.5 and 51 of the 
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Figme 10. Cross-like maze 

synaptic weights were chosen by the evolutionary process within a set of weight 
values given a priori. We were a bit disappointed since we had not expected 
that the evolutionary process would succeed in establishing different connections 
starting from the non-differentiated input distance neurons. Different connec­
tion schemes were achieved by using the fact that the non-differentiated input 
cells were initially at different geographical locations on the hexagonal grid and 
hence received different chemical messages from their neighbourhood, leading 
to different dynamics inside the cell bodies. 

In order to try to minimise the difference of behaviour between non-differentiated 
cells, the input cells were aligned in a layer as described in Fig. 9, experiment 
2. The resulting neural networks were very complex, made of lots of bidden 
neurons and lots of connections, especially between inputs and hidden neurons. 
The non-differentiated cells had a roughly similar behaviour while slight differ­
ences in the connection patterns made the overall scheme perform almost as 
well as in the first experiment: the corresponding robots were able to travel in 
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Figme 11. Resulting best neura l network during experiment 1 

the cross maze even if they sometimes hit a wall. 
Finally, we decided to set the output neurons far away from the input neurons 

so which their chemical influence on t he input neurons would be rather similar 
for all input neurons. The results were similar to t hose obtained in experiment 
2, except that the resulting networks were not so complex. 

8. Conclusion 

We have proposed an algorithm for evolutionary ncurogcncsis, applied to the 
control of a mobile robot, that is characterized by a strong inspiration from 
biology and the usc of dynamical genomic network. Such a proposal leads to 
interesting early results: F irst , the evolutionary ncurogcncsis process proved to 
be able to generate particular neural structures when properly const rained with 
a custom fitness function. Second, the evolutionary process t urned out to be 
able to find ncar-optimal architectures for a simple navigation task involving 
obstac:lc avoidance. Indeed, it was impossible for 11s to design an achitcctnrc 
having a better fitlless fuuction than t c one found by the evolutionary pro­
cess. Such efficient results, achieved with rather simple reactive artificial neural 
networks, should be compared with our expectations of getting more complex 
structures involving learning. On one hand, the complex structures we imag­
ined, associated with complex learning behaviour, need t hat t he robot learns by 
trial and error and hence hits some walls to learn to avoid them. On the ot her 
hand, simple st ructnres discovered by tbc cvol11t ionary process do not need t o 
make such errors since their adapted behaviour is innate. T his demonst rates 
t he ability of the ncnrogenesis process to be able to connect in a different way 
non-differentiated cells if necessary and the ability of t he overall evolut ionary 
process to find out simple yet ncar-opti a! sol11tions. 

A look back to biology might help to understand better wha t should happetl 
in artificial system. If we consider primitive animals, like most insects, they a rc 
often capable of walking as soon as they arc born, without any learning, just 
like the robots discovered by the evolutionary process. Human beings and other 
mammals usually need a learning stage before they arc able to walk. This may be 
cxnlaincd bv the fact that such cvo:tvccl species developed elaborated learning 
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abilities exempting them from developing and preserving complex hardwired 
behaviours in their genotype. Moreover, for complex tasks (like walking with 
two legs), adaptive behaviours arc far more efficient than hardwired behaviours. 

This research should now address a new series of problems for which learning 
is a really mandatory issue for getting maximum fitness. Hence, the selective 
pressure will favour individuals able of on-line adaptation during their lifetime 
(i.e., evaluation time). It is likely that such a methodology might be able to 
produce more efficient autonomous agent controllers capable of facing more 
complex environments through the usc of learning potentialities. 
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