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We develop (in Part 1.1 and 1.2) a local closed graph theory analogous to the (global) Ptk
theory. Applied to the class of nearly convex multifunctions (which we introduce in the paper)
our theory gives especially strong results.

They generalize several classical theorems (the Banach open mapping, the Lusternik) and are
successfully applied in Parts II to the optimization theory.

1. Introduction

The idea of replacement of constrained minimization problems by some related
unconstrained problems (usually more handy) has been omnipresent for centuries.
It was also guiding for [10], [11] of S. Kurcyusz and the present author, where
a use was made of very general Lagrange functions (see also [37], [21]). Necessary
and sufficient conditions for the crucial properties of the (weak, strong and -strict)

duality were expressed in terms of the primal functional fT:
ST (p)= inf f(x), (L.1)
xerly .

where X and Y are sets, /2 X R is a minimized function and I': Y—2% is a multi-
function representing a family of constraints.

Therefore, in [39] we proposed the following program of investigations:

Given a class G of real functions on Y, examine the mutual dependence of a func-
tion f: X—R and a multifunction I': Xy—2%s0 that 71* € G. Given a class Fofreal
functions on X characterize those multifunctions which reassure that ﬁ“ e G for
every feF.

These questions should be studied for various classes F of minimized functions
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Starting to investigate along these lines we became soon aware of the importance
of sundry types of semicontinuity [7].

S. Rolewicz and the present author [12] realizing the above program for some

important classes F and G obtained the mentioned characterization in terms of ge-
neralized upper semicontinuity. The results of [39] are also in the vein.
" The topological thinking of that type proves useful and clarifying. It has a uni-
fying character for numerous problems (Banach open mapping theorem, Lusternik
theorem, adjoint operators, controllability and others), gives a new look on some
of them and spares a lot of hard analysis arguments (compare [17], [26], [27], [55],
[49]). To our knowledge the present paper is the first attempt of systematic study
of the role of semicontinuity in the general theory of optimality conditions. Related
papers are discussed in Parts II. A display of the structure of the article may be
instrumental in reading: A brief presentation of the generalized Lagrange theory
is done in Part II (Paragraph 1). It is followed by sufficient and necessary (or almost
necessary) conditions for the validity of that theory in terms of diverse notions of
semicontinuity of constraints multifunctions (IL.2, 11.3).

At this stage it is important to know when some weak and easy-to-be-checked
properties of multifunctions imply the desirable semicontinuity conditions. Most
of Part I (Paragraphs 3, 4 and 5) is devoted to this end. This germinates from the
Banach open mapping and the Lusternik theorems and eventually comes to the
controllability. Farther investigations of the controllability concept and of its dual
observability are done in Part II.

Reasuming, Part I may be qualified topological, while Part II is an outline of
the optimization and the systems theories.

The nonconvex and nonlinear character of these considerations should be pointed
out. .

Paragraph 2 recollects some basic facts about upper and lower semicontinuity
(and the Hausdorff semicontinuity) of multifunctions. (Only semicontinuity of
superpositions is left to Paragraph I1.2.). We prove a theorem on upper semi-
continuity of multifunctions I of closures of values.

Then we introduce several local types of semicontinuity that prove very useful
in the sequel.

Rates of semicontinuity were introduced by Ptk for the upper Hausdorff semi-
continuity [24], [25]. We define rates of semicontinuity for other sorts of semi-
continuity and make an extensive use of them throughout the whole paper. The
notion of moduli of semicontinuity (introduced by the present author [7]) is, in
a way, inverse to the rates.

We also introduce an important concept of regions of semicontinuity which
is appropriate to handle some problems of uniformity. The uniformity, on the
other hand, constitutes a link between upper and lower types of semicontinuity
and it seems to be essential in what we can call the open mapping theory (theorems
of Banach and Lusternik types). s

In Paragraph 3 we prove an approximation theorem for closed multifunctions
in metric spaces which extends the Ptak’s refinement of the closed graph theorem.
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Nearly convex multifunctions are introduced in Paragraph 4. They generalize
both convex closed multifunctions and continuously differentiable maps and are
related to sets of the Levitin-Miljutin-Osmolovskii type.

~ The consequences of the approximation theorem for nearly convex multi-
functions appear in Paragraph 5 as extensions of the Banach open mapping theorem,
the Lusternik theorem and their generalizations by S. Robinson [26], [27].

We obtain, in conclusion, the local upper Hausdorff semicontinuity (in Theorems
5.3 and 5.11) instead of the usual weaker J-upper Hausdorff semicontinuity, the
former property being of direct applicability (see Paragraph 3 of Part II).

It still remains a challenging question, whether the assumptions of the Lusternik
theorem (without our local Lipschitz continuity of the derivative) entail the local
upper Hausdorff semicontinuity.

More generally

1.1. Problem

Under what additional assumptions the intersection of (two) u.H.s.c. at y,
multifunctions is u.H.s.c.

2. Semicontinuous multifunctions

Let X and .Y be sets. A mapping /" of ¥ to subsets of X is called a multifunction
(I'yc X for each y € Y). Together with /" we shall constantly consider its inverse
multifunction I'~! acting from X to subsets of Y: I'~! x={y:x e 'y}. A multi-
function I” may be represented in a unique way by its graph G (I)={(x, »): x € I'y}.
Conversely, any subset P of X x ¥ determines the multifunction P, Py ={x: (x, y) € P}
and symmetrically it determines P, Px={y: (x,y) € P}; of course (P)~'=P.

The usual convention is that for B Y, I'B=| | I'y and for A<X, 't A=

ViEB
=) It x={y: I'yn A=3}. I'"* 4 is called the preimage of 4 under 7. The
xeAd
exponential preimage of A is defined by

I la={y: I'yc4}, 2.1

exp

and it is immediate that I’ ' 4 =(I"~! 4°), where 4°=X\ 4. Note that TBN A#J,

exp

if and only if BNTI'~! A#Q; I'Bc A, if and only if BT ! 4.

exp

Upper semicontinuity. Let X and Y be topological spaces multifunction 77: ¥—2%
is said to be upper semicontinuous (u.s.c.) at y, if for each open Q containing Iy,
there is a neighborhhod W of y, so that Wcl“;ql, Q. I' is u.s.c. if for each open Q,
I, O is open (Kuratowski [18] I p. 173).

We say that 7" is locally u.s.c. at (x,, yo) if for each neighbourhood P of x, there
is a neighbourhood Q < P such that 0 NI is u.s.c. at y,. Define ['y=0n Ty, if
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y#y, and [y, =Ty,. I is said to be d-u.s.c. at (xo, yo), if there exists a neighbour-
hood Q=X of x, such that [" is u.s.c. at y,.

Note, that if X is regular (73), then the upper semicontinuity implies local upper
semicontinuity which becomes equivalent to d-upper semicontinuity (Kuratowski [18],
I, p. 180).

We denote I'y=(I).

2.1. Theorem

I is u.s.c. for each u.s.c. multifunction I" into subsets of X, if and only if X is
normal (7).
Proof. Suppose X to be normal and let I': Y—2% be u.s.c. at y,. Take an open
set Q with I'y,=Q. By normality there are open set Q; and a closed set F such that
I'yocQ,=F<Q. Since I is u.s.c. at y, there is a neighbourhood W of y, such that
for ye WIy=Q, and thus I'yc=Q.

Suppose now that X is not normal. There exist sets open Q, and closed F, such
that FocQ, and for each open set Q, F,cQ, O is not a subset of Q,.

Let Y be the family composed of F, and all open subsets G of X such that F,=G.
A set 4 in Y is open, whenever there is an open set G, of X so that A={y € Y;
y<=Gy}. Define I': Y-2* by I'G=G, I'Fy=F,. I' is u.s.c. at Fy,, but there is an
open set, namely Q,, such that ['F,=F,=Q,, but for each neighbourhood W of F,
there is G € W so that ITG=GN Q0.
Active boundary The active boundary of I'y, (where I': Y—2%) is defined by (Dolec-
ki [7])

Frac I'yo= () (UW\J¥o) ' (2.2)
WeERBY,
where % (o) is a basis of !neighbourhoods of yo. Of course, (2.2) is independent
of choice of the basis. Frac Iy, is closed and disjoint from Int Iy,.

Observe that x, € Frac Iy, if for each neighbourhood Q of x, and for each
neighbourhood W of yo, QNI WN Iy, #Q. If X is regular and if 1" is u.s.c. at y,
then Frac I'y,=Fr I'y, (topological boundary). Indeed, let x, € Iy, and x, € Frac
I'y,. By regularity there are disjoint open sets O, and Q, such that x, € Q, and

EocQ2 and by upper semicontinuity there us We % (y,) with I'W<Q,. Thus
O, NTWNTICy,=0.

2.2. Example [32]

For an element y of a Banach space X, I'y denotes the set of best approximations
of y by {x:||x||=>1}. For ||y||<l, IyelI'0={x:||x||=1} and consequently I is
u.s.c. at 0. Note that Frac I'0=0.

2.3. Example =

If I' is open and closed, Y being T, then the whole boundary is active: Fr I'y,=
cFrac I'y,.
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Proof. Take any x, € Fr I'y, and any neighbourhood W of y,. Since I'W is open
and [y, is closed I'W is a neighbourhood of x,; We have that for each neighbourhood
Q of x, the open set O N(I'y,)° is not empty, hence Q N(I'W\ T y,)#D.

2.4. Example

Let /'be a (continuous) mapping f: X— Y. We define a multifunction I'y=f"1 ().
I’ is both open and closed and thus every boundary point of f~! (y) is active.

Closedness. If X is regular I is closed-valued (I'y=TITy, y € Y) and u.s.c., then the
graph G (I") is closed (Kuratowski [18], I, p. 175). Before stating a partial converse
of this proposition, we notice that " is u.s.c. at y,, if and only if 7'=* is a closed
mapping at y,: for each closed set F=X such that y, e I'"' F, also y, e '™ F.

Consider the following property of a multifunction 7': Y—2%, X, ¥ Hausdorff
spaces (75,):

for each compact set K< X such that

yo €' K, we have yoe ™! K. (2.3)

2.5. Theorem (Rockafellar [49], see also [18], IL, p. 57)

Let X be T,-space and let P X'x Y be closed. Then P satisfies (2.3) for each
Yo€Y.
Proof. Take a compact set K= X. The set PK={y: Py K#@} is the projection
of KxYNP on Y and thus closed because of compactness of K.

It follows that for X compact and Y being 7,, I is u.s.c. closed-valued, if and
only if G (I') is closed (Kuratowski [18], II, p. 57).
Lower semicontinuity. Let % (x,) denote a basis of x,. /7 is lower semicontinuous
(I's.c.) at (xg, ¥o) is for each element B of & (x,) there exists a neighbourhood W
of y, such that I'~! B> I (the definition does not depend on the basis). We say
that I" is Ls.c. at y,, if for any open set Q that meets [y, ¥, is an interior point of
I'~* Q (Kuratowski [18], I, p. 173).

In other words I”is Ls.c. (at each (xo, yo) € G (I")), if and only if "~ is an open
mapping: I'"~* Q is open for open Q.

A local character of lower semicontinuity is expressed by the fact that 7" is Ls.c.
at yo, if and only if it is Ls.c. at (x4, yo) for each x, € I'y,. For sufficiency take any
open O, O N I'yy#@ and choose an element x, of Q N Iy,. Let B € % (x,) be such

that B=Q. We have I'~! O>I"~1 Bo W, a neighbourhood of y,, because I is ls.c.
at (-X05 yO)

2.6. Example

Let © denote the projection of Xx ¥ on Y. n~1! is Ls.c. (m is open), since a basis
of the product topology is composed of products of open set O, =X, Q,<= 7Y, and
(01 XQ2)=0,. '
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v

To see the mutual dependence of lower and upper semicontinuity, let us introduce
an auxiliary notion: [ is said to be inner semicontinuous (i.s.c.) at y,, if for each
closed set F, F=ly,, there is a neighbourhood W of y, so that for each y € W,
FcTIy. Of course [ is i.s.c. if and only if the complementary multifunction I¢ is
u.s.c. at yo. On the other hand, if X is a T;-space the inner semicontinuity entails
the lower semicontinuity, for then Iy, NQ=#@ implies that for any x, € I'y,NQ
there is a neighbourhood W such that for y € W, x, € I').

Almost lower semicontinuity. We say that I” is almost lower semicontinuous at
{(x0> Yo), Whenever for each neighbourhood Q of x, there is a neighbourhood W
of yo such that I'~! Q: w.

The relationship to lower semicontinuity will be studied in detail in next para-

graphs.

2.7. Example

Let 7 be the projection of R* on the abscissa. Define I'y=zn""y, if y is rational
and I'y=0 otherwise.

I is almost l.s.c. but not Ls.c.
Hausdorff semicontinuities. Let (X, p) be a metric space. Denote B (x,¢)=
={w: p (W, x)<Ce} and for Ac X B (4, &)=\_} B (x, ¢); dist (x, A)=inf {r: B (x, r) N
N A#@}. Let Y be a topological space. *<4

A multifunction I': Y—2% is upper Hausdorff semicontinuous (u.H.s.c.) at y,,
if for each £>0 there exists a neighbourhood W of y, such that I'W<B (I'y,, ¢).

I" is lower Hausdorff semicontinuous (L.LH.s.c.) at y,, if for each &>0 there is -
a neighbourhood W of y,, such that We {y: I'yo+<B Iy, ¢)}. (Pollul, see [32]).

I"is LH.s.c. at y,, if and only if it is Ls.c. at (x,, y,) uniformly for each x, € I'y,:
for each £>0 there is a neighbourhood W of y, so that for each x, € Iy,
T B(xy, ) W.

In fact, the latter means that foreach x, € I'vgand foreveryy e W,y e I' "1 BX (xo, &),
or in other words I'yNB (x4, &)#d, or else xo €B ([ y,¢), thus I'yocB (Y, ¢)
for every y e W.

As for the upper types of semicontinuity we have

2.8. Theorem (Dolecki [7])

Let X be a metrizable space and let Y be a topological space with countable
local basis % (y,) at yo.

If I" is'u.s.c. at y,, then I"is u.H.s.c. (for each n\letric of X) at y, and the active
boundary is compact.

This theorem generalizes the Vainstein lemma [33]: Let X and Y be as in the
theorem and let f: X—Y be a continuous closed mapping. Then Fr f~! (y,) is
compact. Indeed, the multifunction I'y=f~" (») is closed and open (Example 2.4),
thus the whole boundary is active (Lemma 2.4). I is u.s.c. since f is closed.
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If the whole boundary is active, then the converse theorem is true: If the boundary
is compact and I"is uw.H.s.c. at y,, then I is u.H.s.c. at y,. However, in general this
is no longer valid.

2.9. Example ’
1
Consider I': R—R?, given by I'0=0xR, I'r={r}x [«’j, oo] for r#£0. Observe that

I'is a u.H.s.c. at y,, its active boundary at y, is empty, but /" is not u.s.c. at y,.
Local upper Hausdorff semicontinuities. We say that I is locally u.H.s.c. at (xq, o),
if for any neighbourhood P of x, thereis Q=B (x,, e)=P sothat NI is u.H.s.c.
at yo. I' is called d-upper Hausdorff semicontinuous (J-u.H.s.c.) at (xq, yo) if there
is neighbourhood Q =B (x,, ¢) such that for each >0 there is a neighbourhood W
of yo so that We{y: 0N Iy<B (Iy,, r)}.
2.10. Example
&

For aeR, I'a={(x,y) e R*: y=ax*>+a}. If \a—a0\<T_—|_?, then lax?+a—
—(ag x*+ay)|<<e, thus I is lLs.c. and locally u.H.s.c. everywhere. It is neither
u.H.s.c. nor 1.H.s.c.

It is interesting that a multifunction may be u.H.s.c. at y, (and consequently
J-u.H.s.c. at y,) but not locally u.H.s.c. at (xq, yo).

2.11. Example

Let X be a non separable Hilbert space and let {x,}, 0<e<1 be a set with the
property that ||x,/|=¢ and B (x, ¢/2) does not contain any x,, #7#e.

5
Let A be the set composed of 0 and of open segments (xe,zxg). For reR,
define I'r=B(4,r) and 7'0=A4. Of course [ is u.H.s.c. at 0. Take any O<<e<Cl.
5 — &
The ball B (0, ¢) is disjoint with (x£,4xs) so that B (A NB (0, &), Z) does not

contain x, which is an element of B (x,, &) N B (A4, r) for each r>0. Therefore I is
not locally u.H.s.c. at (0, 0).

Therefore K NI need not be u.H.s.c. at y, even if a multifunction I" is u.H.s.c.
at y, and if K is a closed subset of X.

This is in the contrast with properties of the upper semicontinuity (Kuratowski
[181, I, p. 180). However the following simple theorem shows how an additional
requirement of the shape of the set Iy, reassures the inverse implication.

2.12. Theorem

Suppose that the set Iy, possesses the following property: there is e>0 such
that for all s>>0 there exists »>0 such that

B (I'vo N B (Xo, 8), )= B (x0, ) N B (I¥o, 1) (2.4)
and that I is J-u.H.s.c. at (xq, yo). Then I is locally u.H.s.c. at (xq, yo)-
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We have a specification of Theorem 2.12 generalizing the estimates (IV.2.12
of Kato [45]).

2.13. Theorem

Let X be a normed space and suppose that Iy, is locally convex at x, (i.e. there
is ¢>0 such that B (x,, &) NIy, is convex). If I' is d-u.H.s.c. at (x,, yo) then it is
locally u.H.s.c. at (xq, yo)-

Proof. By assumptions there is ¢ >0 such that for each r >0 there is a neighbourhood
W of yo such that for y € W I'y N\ B (xq, 8)=B (Iyo, r) (and we may assume that

£<¢/2). We shall show that I'y N B (x,, )= B (I'yo N B (xo, &), 2r), that is local
upper Hausdorff' semicontinuity at {x,, ¥o).

Let, ||xo—x||=¢,;<<e and suppose that there exists x; € Iy, with ||x—x||<r.
The interval [x, x,] is a subset of Iy, in view of local convexity and setting ¢, =
=¢& ||x;—Xol| 1.

dist (x, T'vo VB (X0, £)) <||xo +e; (31 —Xo) —X|| <

<llx—xy|[+I(1=&5) Gy —xo)lI<r+[I(1—&2) (1 —x0)ll . (2.5)
The second term may be estimated from the formula .
(1 —&2) (1 —xo)l[+les (1 —Xo)l| <[IX—Xol| +|lx—2x4]l, or

H(1—ey) ey —Xo)l |+, <<ey +7. (2.6)
2.14. Example ‘

Let F be a mapping from a normed space X to a normed space Y. We say that
X, 1s regular for F, whenever there are ¢>0 and k>0 such that for x EBTCO, 8)

dist (x, F=* (F (xo))) <k ||F (x)—F (xo)|| 2.7

(loffe [42], Toffe, Tikhomirov [17]). ‘
Set I'y=F~1(y) and y,=F (x,). Notice that (2.7) is equivalent to the following
condition: if y € B (yy, ), then I'y N\ B (xo, &)=B (I'yo, kr), that is, I' is J-u.H.s.c.
at (xo, yo). The fact that in Banach spaces, x, is regular for a continuously Fréchet
differentiable mapping F with the surjective derivative F' (x,) (the Lusternik theorem
[49]) will follow from our considerations. The proof that under a mild additional

assumption Iy, fulfils (2.4) and thus 7" is locally u.H.s.c. at (x,, yo) will be postponed
to the last section.

Moduli and rates of semicontinuity. Let X and Y be metric spaces. The definition
of lower semicontinuity (at (x, y)) of a multifunction 7: Y—2% may be restated
as follows: for each r>0 there exists a number ¢ (+)>0 such that

r=*B(x,r)>B (3.4 1). 28)
A function g¢: (0, ro)—>R, which fulfils (2.8) is called a rate (of lower semi-
continuity of I at (x, y)). Similarly we define rates of almost lower semicontinuity.
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analogous quantitative definitions may be formulated for the upper Hausdorff semi-
continuity (J-u.H.s.c., local u.H.s.c. and so on). For instance, ¢ is a rate of u.H.s.c.
at y, if for each r € (0, ry)

I'B(yo,q (r))=B Iy, 7). (2.9

This notion (for u.H.s.c.) was introduced by Ptak [24]. A sort of inverse notion
was used by the author in [7]. The modulus of semicontinuity (of I” at y,) is the
function u: R, —R, given by

u (s)=inf {r: I'B (yo, $)=B (I'yo, )}. (2.10)

Note, that if r>u (s), then there exists a rate ¢ such that g (r)<s.
Uniformity. I' is said to be ls.c. uniformly at (x,, yo) if there are ¢>0,#>0 and
a function g: (0, r,)>R, such that for each x € B(xy,¢) and each ye '™t xnN
N B (yo, 1) (2.8) holds.

Similarly we define the uniform almost lower semicontinuity. 7" is d-u.H.s.c.
uniformly at (xo, yo), if there are ¢>0,#>0 and a function ¢ such that for y e

€ B (y05 77)
IB(y,q ()N B (X0, 8)=B (I, ). (2.11)

Analogoué definitions we introduce for the upper Hausdorff (and local upper
Hausdorff) semicontinuity.

2.15. Theorem

Iis Ls.c. uniformly at (x,, yo), if and only if /7 is d-u.H.s.c. uniformly at (x,, yo).

Besides the rates of semicontinuity are the same (perhaps restricted to an interval
©, r))).
Proof. Suppose the former and take positive numbers #,,#, with 7, +n,=7.
Let y' € B(yo,7;) and take r>0(avb denotes the smaller number). For each
yeB(y,n2vq(r)) and for xeIyNnB(xo,¢), I'~* B(x,r)>B(y,q(r)) that is
v el"*B(x,r) and thus x € B[y, r).

Rewriting, I'B (y', 7,V q (r)) N B (x,, ¢')=B (I'y', r) for ¢’ <e. Conversely, assume
that there are ¢>0, #>>0, and ¢ so that for each y € B (yq,#), (2.11) holds. Split
n=1n1+12, 1, >0, 7,>0.

Let y'eB (yo, n), x€ly' NB(xe,¢) and yeB(y,q(r)vn,). Therefore
y €B(yy,7) and fulfils (2.11), hence xeB(Iy,r) or B(x,r)NTy#0 or else
yel"tB(x,r). Thus B(y',q(r)vy,)=l "t B(x,r).
Regions of uniform semicontinuity. Let (X, p) and (Y, 3) be metric spaces and let
I': Y—-2% be a multifunction.

Consider a positive function ¢ defined on (0, ry) for some iy >0.

We define a multifunction 7',: Y—2%:

Lyy={xely:I'"'B(x,r)>B(y,q(r)) for r<ro}. (2.12)
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The graph G (I,) is the set of all these (x, y) at which I is Ls.c. at rate ¢q. G (I,)
is called the region of g-lower semicontinuity of I". Similarly we define
I,.y={xely:I'"'B (x,_r_):B(y, q (), r<r0}. (2.13)

Let w be another positive function on (0, ry). Let us introduce another multi-
function

Toy={xely:B(I'"'B(x,r),w(r))=B(y,q(r)) for r<ro}.  (2.14)
We point out that
G(I)=G ()= G Ty, 0)=G (Ty.0)=G () .15

_ where the intersection is taken over all w such that w (r)—0, as r—0.
Observe that I is uniformly l.s.c. at (xo, yo) With rate ¢ if and only if there are
balls B (xq, ¢), B (yo,#) such that for B=B (xq, &) XB (¥o, 1)
BNnG (NG (T). (2.16)
The uniform almost lower semicontinuity at (x,, yo) (with rate ¢) admits the
following interpretation in terms of I7,.

BNG (<G (T,.). 2.17)

3. Approximation theorem

The purpose of this section is to show that for closed multifunctions the uniform
almost lower semicontinuity entails the (uniform) lower semicontinuity, and equi-
valently (in virtue of Theorem 2.15) the uniform J-upper Hausdorff semicontinuity.
In fact, we shall derive the above conclusions from a more general apptoximation
property for a multifunction. We start with the Ptak nondiscrete induction theorem.

Following Ptk [24] we say that a mapping w: (0, ro)—(0, o) is a small function,
whenever the sum

o (N =r+o () +o (o F))+.. ’ 3.1
is finite for each r € (0, ro).

Let Z be a multifunction from (0, ro) with Z (r)c X, where (X, p) is a complete
metric space. The limit of Z as r tends to 0 is given by

zZO=N UZO. (3.2)

§>0 r<s

3.1. Theorem (Ptak [24], [25])

Suppose that for each O<r<r,
Z (=B (Z (o (), r). (3.3)
Then for each 0<r<r,
Z(r)eB(Z(0), 0 (r)). . (3.9
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We shall be concerned with tiny functions: those small functions that are non-
decreasing and tend to zero as r does. For such the functions the sum o tends to
zero with r. ’

3.2. Theorem

Let I be a closed multifunction from a metric space Y to subsets of a complete
metric space X. Let ¢ be a positive function tending to zero with r and let w be a tiny
function (both defined on (0, ;). Assume that x, € I'y,. If there are ¢>0,7>0
such that

B (x0, &) X B (yo, 1) N G (I =G (I'y, 40) (3.5)

then there is r,>0 such that I" is J-u.H.s.c. uniformly at (x,, o) at rate p such
et p (r)<q (m(r)}, r<r,, where m (r)< sup t. (3.6)
s()<r

Proof.Let y € B(y,, ) and let x e I'y N B(x, ). In view of the assumptions (x, y) € G x

X (I'y.40)> hence for y’ € B (», q (r)) one has that B(y', g (o (r))) NI~ X B (x,7)#@.

Equivalently I'B(y', g (w (r))NB(x,r)#0 or xeB (IB (¥', ax (@ (1)), ).
Represent # =1, +17,, 7, >0, 7,>0. We have just proved that for y" € B (yo. #:)

and y € B(y, q(r)vn,), IyNB (xo,)<B (B (¥, q(w(r))),r), that is

I'B(y', q(r)vn) N B (x0,8)<B(IB (V' q (@ (1)), 7). (3.7
Set ,
Z(r)=IB(y',q(r))NB (xo,b e—o(r)). (3.8)
In order to apply the Ptdk theorem we shall show that (3.7) entails (3.3) with
Z given by (3.8). In fact, from (3.7) it follows that for r<<ry, g (r\)<n,, I'B(¥’, q(r)) N
NB (xo,e—0(r))<B(IB (¥, g (o (1)) ﬂB(xo, e— o (r)+r), r), which in view of the
equality o (w (r))=0 (r)—r becomes
TB(y',q(r))NB(xo,e—0 ()=B(IB (¥, q (o ())N
NB(xp,e—0a (0 ()),r). (39
Recalling the definition of Z (3.8) we recognize the first step of the Ptdk theorem.
A standard argument shows that because of closedness of G(I), () | I'B (y q(t)) =

s<0 t<s

=1y’, thus Z (0)=Ty’ and applying the second step we have for r<ir,
I'B(¥', q(r))NB (xo,e—0 (r))=B(Iy', a(r)). (3.10)
For any &, <¢ we may find r,<r, such that for r<r, (3.10) is valid with B (xo, é—
——cr(r)) replaced by Ea(:a—’) For any p: (0, r,)—R, such that (3.6) holds
By, p (M) VB (o, e)SBUY, 1), r<rs. (3.11)

3.3. Corollary

Under the above assumptions there is a neighbourhood B of (xo, o) such that

BNG(I)<=G (T). 2.16")
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3.4. Corollary

Let X, Y, q and I be as in Theorem 3.2 and let x, € I'y,. Suppose that there
are ¢>0, #>0 such that for each x € B(x,,¢) and every y e '™ xNB (o, 1),

T~YB(x,r)>B (7, ). (3.12)

Then there are él>0, 7n:>0 and r;<r, such that for each r<r'<r; and for
each x € B(xo,8),y el xNB o, 711)

X I~ B(x,r)2B(y,q(r)).

Indeed (3.12) entails the assumptions of Theorem 3.2 for arbitrarily tiny w.
Thus ¢ may be arbitrarily close to 1 and p to g.

The corollary is a local version of the closed graph theorem of Ptak [24]. The
assumptions (and the thesis) of the Ptdk theorem are (3.12) (and (3.13)) uniform
everywhere: for each x € X and y e I'"! x. The closed graph theorem (with the
additional assumption that ¢ tends to zero with r) follows immediately from Co-
rollary 3.4.

Strivings to derive the corollary directly from the closed graph theorem by

(3.13)

\

restricting it to the metric space B (xo, ¢) X B (o, #7) encounter strong difficulties in
replacing (3.12) by I'=* (B (x, )N B (x0, 8))=>B (¥, 9 (r)) N B (yo, 1)

The course of the proof of Theorem 3.2 resembles the first part of the original
proof of the Ptak closed graph theorem [24], but our argument requires several
refinements imposed especially by the localization.

The first part of Ptak’s proof concludes with, a (not stated explicitely) u.H.s.c.
result. The second part of Ptak’s proof is related to the necessity part of out Theorem
2.15.

Polciaglos¢ w optymalizacji z ograniczeniami. Cze$¢ I

W pracy rozwinieto lokalna teorie o domknigtym wykresie analogiczna do (globalnej) teorii
Ptaka. Stosujac te teorie dd klasy multifunkcji prawie wypukiych (ktora wprowadza si¢ w pracy)
otrzymuje si¢ szczegblnie silne wyniki. Uogoélniaja one kilka klasycznych twierdzen (twierdzenie
Banacha o odwzorowaniu otwartym, twierdzenie Lusternika). Stosuje si¢ je z powodzeniem w Czgs-
ci II do teorii optymalizacji.

TlosyHenpepbIBHOCT, BONTHMH3ANHH € OrpaHHICHHSMH.
(Yactp I)

B paGote npencTasiieHa pacUIMpeHHas JIOKaJIbHASI TEOPUS O 3aMKHYTOM Tpaduke, aHATOTHIHO
(rnobanwsuoit) Teopuu Itaxa. Vcrons3yst 3Ty TEOPHIO ISl KiacCa KBa3HUBBIIYKIIBIX MYJTbTHGDYH-
KOui (BBOOMMOIO B TAaHHOW pa®oTe) IOCTHTArOTCI 0CO00 CHITbHBIE pe3yibTaThl. OHE 00006warT
HECKOJIbKO KJTACCHYECKUX TeopeM (TeopeMa banaxa 06 oTKpeITOM 0TOOpaXxkenuu, Teopema Jlroctep-
HuKa).OHH C YCIIEXOM WCIHOJIB3YIOTCsl BO 2-H YaCTH B TEOPUU ONTHMHU3ALUH.



